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SUMMARY

Granule cells (GCs) in the mouse olfactory bulb (OB)
continue to be generated in adulthood, with nearly
half incorporated and the remainder eliminated.
Here, we show that elimination of adult-born GCs is
promoted during a short time window in the post-
prandial period. Under restricted feeding, the number
of apoptotic GCs specifically increased within a few
hours after the start of feeding. This enhanced GC
apoptosis occurred in association with postprandial
behaviors that included grooming, resting, and
sleeping, and was particularly correlated with the
length of postprandial sleep. Further, deprivation of
olfactory sensory experience in the local OB area
potentiated the extent of GC elimination in that area
during the postprandial period. Sensory experience-
dependent enhancement of GC elimination also
occurred during postprandial period under natural
feeding condition. These results suggest that exten-
sive structural reorganization of bulbar circuitry
occurs during the postprandial period, reflecting
sensory experience during preceding waking period.
INTRODUCTION

In mice, granule cells (GCs) in the olfactory bulb (OB) are gener-

ated and incorporated into the neuronal circuitry from the embry-

onic stage right through into adulthood (Lledo et al., 2006; Lois

and Alvarez-Buylla, 1994; Luskin, 1993). Among adult-born

GCs, approximately half are incorporated into the preexisting

neuronal circuitry while the remainder are eliminated (Petreanu

and Alvarez-Buylla, 2002; Rochefort et al., 2002; Yamaguchi

and Mori, 2005). Adult neurogenesis in the OB therefore resem-

bles embryonic development in that excess neurons are first

prepared and then selected to ensure adequate fine tuning of

the neuronal circuitry. Pruning of excess cells and synapses is

considered crucial to maintaining the number of cells and

synapses within an appropriate range, and to adding new func-
tions to the circuitry without disrupting those already present

(Buss et al., 2006).

The survival rate of adult-born GCs is regulated by olfactory

sensory experience (Petreanu and Alvarez-Buylla, 2002; Roche-

fort et al., 2002). This in turn suggests that their selection under-

lies the experience-dependent reorganization of OB circuitry.

Selection occurs during a critical period, with survival and death

strongly influenced by sensory experience from days 14 to 28

after cell generation (Yamaguchi and Mori, 2005). This time

window corresponds to the period when adult-born GCs make

synaptic contact with preexisting neurons (Carleton et al.,

2003; Kelsch et al., 2008; Petreanu and Alvarez-Buylla, 2002;

Whitman and Greer, 2007), suggesting that synaptic input plays

a crucial role in the selection of adult-born GCs.

The synaptic plasticity underlying learning and memory is

crucially regulated by the wake-sleep cycle. Sensory experi-

ence-induced neuronal activity occurs during waking states,

while neuronal activity during subsequent sleep is thought to

facilitate the consolidation of sensory experience memories

and promote the concomitant reorganization of neuronal circuits

(Buzsáki, 1989; Diekelmann and Born, 2010).

Given this background, we asked whether the selection of

adult-born GCs occurs continuously throughout the day, or in

associationwith specific behavioral states. By combining behav-

ioral analysis with immunohistochemical detection of apoptotic

GCs, we found that extensive elimination of adult-born GCs

occurs during the postprandial period. In addition, the extent

of GC apoptosis during the postprandial period was regulated

by olfactory sensory experience. From these observations we

propose a two-stage model for the selection of adult-born GCs

which states that sensory input during waking and active signals

during the subsequent postbehavioral period may work together

to direct the sensory experience-dependent elimination or incor-

poration of adult-born GCs.

RESULTS

Apoptotic Elimination of GCs in the OB Occurs
Preferentially during the Feeding and Postprandial
Period under Restricted Feeding
We first investigated whether the elimination of adult-born GCs

occurs during specific daily time windows in mice housed under
Neuron 71, 883–897, September 8, 2011 ª2011 Elsevier Inc. 883

mailto:yamaguti@m.u-tokyo.ac.jp
http://dx.doi.org/10.1016/j.neuron.2011.05.046


Neuron

Neuronal Elimination during Postprandial Period
conventional conditions with ad libitum feeding. The number of

apoptotic GCs in mice at various circadian times was examined

by immunohistochemical detection of activated caspase-3-

expressing GCs (Yamaguchi and Mori, 2005; Yuan et al., 2003;

Figure 1D).While results showed no statistically significant differ-

ence in the average number of caspase-3-activated GCs at

different time points, the wide variation in number seen across

animals indicated that the control of GC elimination may involve

mechanisms other than circadian rhythm.

The initial clue indicating a time window for enhanced GC

elimination, namely the postprandial period, came from food

restriction experiments. We hypothesized that the apoptotic

process of GCs might be associated with olfactory behavior

and examined whether GC elimination is associated with feed-

ing, a typical olfaction-dependent behavior (Doty, 1986). Since

feeding behavior varies under ad libitum feeding, we controlled

behavior using a restricted feeding paradigm (Gooley et al.,

2006; Mistlberger, 1994; Figure 1A) in which access to food

pellets was limited to 4 hr per day (11:00 to 15:00). After habitu-

ation for 9 days, mice were mostly devoted to eating during

the initial hour (11:00–12:00) after supply but showed various

postprandial behaviors during the following hour (12:00–13:00),

such as grooming, resting, and sleeping (see Figure 3A). Mice

were sampled at various times (Figure 1A; day 10) and the

number of caspase-3-activated GCs was counted (Figures 1B

and 1E). The number at 2 hr after the start of supply (13:00)

was an average 2.4-fold higher than that before supply (11:00),

and then tended to decrease at 4 hr after the start of supply

(15:00). In a separate experiment, caspase-3-activated GC

number showed no significant increase at 1 hr after the start

of feeding (see Figure 3C). Number of caspase-3-activated

GCs thus increased in the short time window between 1 and

2 hr after the start of feeding and declined by 4 hr. Outside this

feeding time window, the caspase-3-activated GC number

was similar to or less than that immediately before supply (Fig-

ure 1E). To examine whether an increase in caspase-3-activated

GCs also occurs during feeding and postprandial period at

a different circadian time, a different feeding time (21:00 to

1:00) was set in a second group of mice (Figure 1F). Results

showed an increase in the number of caspase-3-activated

GCs during the shifted time window of feeding and postprandial

behaviors.

This increase in the number of caspase-3-activated GCs

during the eating and postprandial periods suggests that the

number of apoptotic GCs would be increased during this time.

However, given that activation of caspase-3 is not always asso-

ciated with cell death (D’Amelio et al., 2010), we also examined

the TUNEL method of detecting cell death, which detects

DNA fragmentation. Results showed a remarkable increase in

TUNEL-positive GCs during the feeding and postprandial period,

confirming the increased death of GCs during the time window

(Figures 1C and 1H).

This result indicates that caspase-3-activation is an excellent

indicator of GC death. In fact, most caspase-3-activated GCs

were TUNEL-positive (before feeding, 85.5% ± 4.7%; 2 hr after

the start of food supply, 83.5% ± 3.4%; n = 4 mice, average ±

SEM) (Figure 1G). In addition, about 96%of caspase-3-activated

GCs showed apoptotic chromatin deformities, such asmarginal-
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ization, fragmentation, and condensation (Clarke, 1990),

whereas activated caspase-3-negative GCs showed no nuclear

deformity (Figure 1G and see Figure S1A available online).

The increase in the number of caspase-3-activated apoptotic

GCs during the feeding and postprandial period occurred

throughout the OB, from the rostral to caudal regions (Fig-

ure S1B). Similar numbers were seen in the left and right OB of

the same animal (Figure S1C). These results indicate that the

induction of GC apoptosis during feeding and postprandial

period occurs globally in all regions of the OB.

Apoptosis of Newly Generated GCs Increases
during Feeding and Postprandial Period
To determine the cellular ages of GCs that showed enhanced

apoptosis during the feeding and postprandial period, we first

labeled adult-born new GCs by BrdU injection. We classified

the new GCs into four subsets with different cellular ages; those

aged 7–13 days, 14–20 days, 21–27 days, and 28–34 days, and

then examined the apoptosis in each subset (Figures 2A and 2B).

Subsets of new GCs within the critical period for the survival and

death decision, aged 14–20 days and 21–27 days (Yamaguchi

and Mori, 2005), showed enhanced apoptosis during feeding

and postprandial period (Figure 2B, green bars). Given that

BrdU injection cannot label all proliferating cells (Taupin, 2007),

the results indicate that new GCs aged 14–20 days constitutes

at least 24.5% of caspase-3-activated GCs and GCs aged

21–27 days constitutes at least 22.6% (Figure 2C). New GCs

after the critical period (days 28–34) also showed enhanced

apoptosis during the time window, although their contribution

to total apoptotic cell ratio was smaller (9.5%). Interestingly,

new GCs before the critical period (days 7–13) showed no signif-

icant enhancement in apoptosis during the feeding and post-

prandial period (Figure 2B; see Discussion). Thus caspase-3-

activated GCs is comprised of at least 7.8% of new GCs aged

7–13 days, 24.5% of new GCs aged 14–20 days, 22.6% of

new GCs aged 21–27 days, and 9.5% of new GCs aged

28–34 days. Rough approximation by summating the percent-

age of each new GC subset suggests that more than 64% of

caspase-3-activated GCs are new GCs aged day 7 to 34, indi-

cating that the majority of the apoptotic GCs were adult-born

new GCs. This notion was supported by the coexpression of

doublecortin (DCX) in many caspase-3-activated GCs (40%–

46%) (Figures 2A and S2A; Brown et al., 2003). The total number

of BrdU-labeled GCs per OB did not significantly differ before

and at 2 hr after the start of feeding in all periods examined (Fig-

ure S2B), indicating that the increase in apoptotic GCs during

feeding and postprandial period was not due to any rapid recruit-

ment of new GCs in the OB.

Neonate-born GCs are gradually eliminated in the adult period

(Imayoshi et al., 2008). To examine whether preexisting neonate-

born GCs also showed increased apoptosis during feeding

and postprandial period, they were BrdU-labeled on postnatal

days 4-5 and examined in adulthood (Figures 2D and S2C–

S2E). Although the number was small, caspase-3-activated

GCs with BrdU labeling were observed and increased by

2-fold at 2 hr after food supply. Thus, neonate-born, preexisting

GCs also showed increased apoptosis during the feeding and

postprandial period.



Figure 1. Apoptosis of GCs in the OB Occurs Preferentially during the Feeding and Postprandial Period

(A) Restricted feeding protocol. On days 1–10, food was supplied for only 4 hr (11:00–15:00) per day. On day 10, mice were analyzed at various circadian time

points (arrows). Mice were maintained under a 12 hr light-dark cycle (light on, 5:00–17:00, white bars; light off, 17:00–5:00, gray bars).

(B) Caspase-3-activated GCs in the granule cell layer (GCL) of the OB before and 2 hr after the start of food supply. Scale: 100 mm.

(C) TUNEL-positive GCs in the GCL of the OB before and 2 hr after the start of food supply. Scale: 100 mm.

(D–F) Number of caspase-3-activated GCs under different feeding paradigms. Each dot represents the number of caspase-3-activated GCs in one animal

(average of left and right OBs), and bars indicate the average number at respective time points. (D) ad libitum feeding. (E) food supply from 11:00 to 15:00. (F) food

supply from 21:00 to 1:00.

(G) Codetection of caspase-3 activation and DNA fragmentation (TUNEL) in GCs. Confocal images of apoptotic GCs in low magnification (upper panels,

arrowheads) and an apoptotic GC in high magnification (lower panels) 2 hr after the start of food supply. The GC in the lower panels shows a fragmented nucleus.

Green, activated caspase-3; red, TUNEL signal; blue, nuclear chromatin staining by Hoechst 33342. Scale: 10 mm (upper) and 5 mm (lower).

(H) Number of TUNEL-positive GCs before and 2 hr after the start of food supply.

*p < 0.05; **p < 0.01; ***p < 0.001; one-way ANOVA (D) (p = 0.49), one-way ANOVA with post hoc Bonferroni test (E and F), and unpaired t test (H). See also

Figure S1.
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Figure 2. Cell Death of Newly Generated GCs Increases during the Feeding and Postprandial Period

(A) BrdU labeling and DCX expression in caspase-3-activated GCs (arrow). BrdU-labeled cells are at 14–20 days of age. Scale: 20 mm.

(B) Number of caspase-3-activated new GCs of various ages before and 2 hr after the start of food supply (green bars). GCs were BrdU-labeled for 7 days and

analyzed at the indicated periods. Total number of caspase-3-activated GCs is also shown (orange bars), to confirm its�2-fold increase 2 hr after food supply in

every analysis (p < 0.01).

(C) Percentage of the number of BrdU-labeled GCs of various ages among total number of caspase-3-activated GCs.

(D) Number of caspase-3-activated neonate-born GCs before and 2 hr after the start of food supply (left graph). BrdU was injected on postnatal days 4–5 and the

mice were analyzed in adulthood. Total number of caspase-3-activated GCs is also shown (right graph).

(E) Number of caspase-3-activated newly generated GCs that are positive for either BrdU or DCX in the hippocampal DG before and 2 hr after the start of food

supply. BrdU-labeled cells are 14–20 days of age.

In (B)–(E), 6 or 7 mice were analyzed for individual groups. Data represent the average ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant (t test). See

also Figure S2.
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Adult neurogenesis also occurs in GCs of the hippocampal

dentate gyrus (DG) (Lledo et al., 2006; Zhao et al., 2008). To

examine whether apoptosis of adult-born GCs in the DG was

also enhanced during feeding and postprandial period, cas-

pase-3-activated GCs labeled with BrdU (14–20 days of age)

were examined in the DG of the samemice used for OB analysis.

At 2 hr after food supply, no significant increase was seen in the

number of either caspase-3-activated GCs or caspase-3-acti-

vated GCs labeled with BrdU or DCX (Figures 2E and S2F–

S2H). Thus, enhanced apoptosis during feeding and postpran-

dial period occurs in the OB but not in the hippocampal DG.
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Enhanced GC Apoptosis Occurs in Association
with Postprandial Behaviors
We then addressed the question of why apoptosis of adult-born

GCs is enhanced during the feeding and postprandial period.

Although all mice examined were confirmed to have eaten food

pellets during the feeding time, some showed no apparent

increase in GC apoptosis (see Figure 1E). No significant correla-

tion was seen between the amount of food consumed and

number of caspase-3-activated GCs (data not shown).We there-

fore speculated that the enhancement of GC apoptosis was

correlated with behavior other than eating.



Figure 3. Enhanced GC Apoptosis Occurs in Association with Postprandial Behaviors

(A) Behaviors during the initial 2 hr after the start of food supply. Behaviors are categorized and the frequency of each behavior is shown in the histograms. Data

represent the frequency averaged from 11 animals.

(B) Protocol used for the disturbance of postprandial behavior. The mice were classified into six groups and respectively allowed to behave freely (blue), and

disturbed from resting, sleeping, and extended periods of grooming by gentle handling (red) during the indicated periods. Arrows indicate analysis times.

(C) Number of caspase-3-activated GCs in the six groups of mice shown in (B).

(D) Examination of GC apoptosis during the waking (red arrows) and sleeping period (black arrows) outside feeding time.

(E) Number of caspase-3-activated GCs in mice shown in (D).

In (C) and (E), each dot represents the number of caspase-3-activated GCs in one animal (average of left and right OBs). Bars indicate the average. **p < 0.01;

***p < 0.001; n.s., not significant; one-way ANOVA with post hoc Bonferroni test (C) and unpaired t test (E). See also Figure S3 and Movie S1.
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We therefore analyzed the behavior of mice during the initial

2 hr of feeding and postprandial period (Figure 3A and Movie

S1). Before food presentation, mice showed extensive explor-

atory behavior. During the initial hour of supply, they were mostly

occupied with eating and drinking, and also exhibited a small

amount of exploratory and grooming behaviors. During the

following hour, in contrast, various postprandial behaviors domi-

nated over eating behavior, including grooming, resting, and

sleeping.
Given the apparently distinct behaviors between the first and

second hours, we examined the number of apoptotic GCs at

1 hr after the start of feeding (Figures 3B and 3C). The number

did not significantly increase over this period, when the mice

were mostly occupied with eating and drinking. In contrast, the

number substantially increased during the following hour, when

postprandial behaviors became conspicuous. To examine the

contribution of postprandial behaviors to GC apoptosis, we sup-

pressed postprandial behaviors, namely resting, sleeping, and
Neuron 71, 883–897, September 8, 2011 ª2011 Elsevier Inc. 887



Figure 4. Length of Postprandial Sleep

Correlates with the Extent of GC Elimination

(A) Protocol for evaluation of sleep behavior by

EEG and EMG recording. On day 10, the EEG from

the occipital cortex and EMG from the neck

muscle were recorded during 1 hr of the post-

prandial period.

(B) Behavioral state was classified into waking,

light sleep, slow-wave sleep, and REM sleep

states according to EEG, EMG, and behavior.

(C–E) Correlation of the number of caspase-3-

activated GCs with the length of total sleep (C),

slow-wave sleep (D), and REM sleep (E). Each dot

represents the data from one animal (n = 14).

Regression line, Pearson’s r and p value are indi-

cated (C and D).

See also Table S1.
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extended periods of grooming (longer than 5 s), by gently

handling the mice during the feeding and postprandial period,

without disturbing their eating, drinking and exploratory behav-

iors (see Supplemental Experimental Procedures; Mistlberger

et al., 2003; Figures 3B and 3C). A group of control mice that

were allowed to behave freely during the feeding and postpran-

dial period showed a two-fold increase in apoptotic GCs (Figures

3B and 3C; No disturb: 2 hr). In contrast, this increase in GC

apoptosis was significantly inhibited in a second group whose

postprandial behaviors during the feeding and postprandial

period were disrupted (Disturb: 2 hr). We confirmed that the

gentle handling did not reduce the amount of food pellet

consumed during the 2 hr (2.1 ± 0.2 g for control mice and

2.0 ± 0.1 g for handled mice, p = 0.22). When postprandial

behaviors were disrupted for 2 hr and then allowed for the

following 1 hr, GC apoptosis increased (Recover: 3 hr). This

increase was in turn inhibited by continual gentle handling

disruption (Disturb: 3 hr). These results indicate that enhanced

GC apoptosis during feeding and postprandial period occurred

in association with postprandial behaviors.

Length of Postprandial Sleep Correlates with the Extent
of GC Apoptosis
Given that sleeping behavior was the most conspicuous post-

prandial behavior in the present analysis (Figure 3A) and that

sleep plays a crucial role in brain plasticity (Buzsáki, 1989;

Diekelmann and Born, 2010), we next examined the contribution

of sleeping behavior during the postprandial period to GC

apoptosis. Postprandial sleep was evaluated using EEG and

EMG recording in freely behaving mice. After implantation of
888 Neuron 71, 883–897, September 8, 2011 ª2011 Elsevier Inc.
recording electrodes, mice were sub-

jected to restricted feeding and analyzed

on day 10 (Figure 4A). During the initial

1 hr of feeding, mice engaged in contin-

uous eating without resting or sleeping.

The EEG of the occipital cortex and

EMG of the neck muscles were recorded

during the following hour, and the mice

were then perfusion fixed. Using video

recordings of behavior, EEG, and EMG,
the behavioral state was classified every 10 s into the

waking, light sleep, slow-wave sleep, and REM sleep states

(Radulovacki et al., 1984; Tsuno et al., 2008; Figure 4B).

Waking-sleeping behaviors during postprandial period were

fragmented into episodes of short duration. Thus the total time

of each state during the 1 hr postprandial period was calculated

and evaluated.

All mice examined showed various sleep states with various

lengths (Table S1). The length of total sleep (sum of light, slow-

wave, and REM sleep) positively correlated with apoptotic GC

number (Figure 4C). By state, the length of slow-wave sleep

correlated well with apoptotic GC number (Figure 4D). On the

other hand, REM sleep was not necessarily observed during

the postprandial period, and many mice without REM sleep

showed an increase in GC apoptosis (Figure 4E). These results

confirmed that most mice slept during the postprandial period

and suggested that slow-wave sleep or total sleep promoted

GC apoptosis. They also suggested that a brief period of sleep

of 20–40 min exerted a potent effect in enhancing GC apoptosis

(Figure 4C). We also confirmed in EEG- and EMG-recorded mice

that the gentle handling efficiently inhibited sleep states during

the postprandial period (data not shown), supporting the potent

role of sleep in enhancing GC apoptosis.

The occurrence of sleep during the postprandial period is

in accord with the notion that satiety induces sleep (Mieda

and Yanagisawa, 2002). One question is whether sleep per se

has a potent role in enhancing GC apoptosis, or whether this

is due to a combination of feeding and sleep. Continuous

behavioral analysis of food-restricted mice showed that they

also slept outside the postprandial period (Figure S3), whereas
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enhanced GC apoptosis was apparent only during the postpran-

dial period (Figure 1). Outside the feeding time, the number of

apoptotic GCs during the sleeping period was low and did not

differ significantly from that during the waking period (Figures

3D and 3E). These results suggest that a sequence of feeding

followed by sleep had a specific effect on the enhancement of

GC apoptosis.

Sensory Deprivation Enhances GC Apoptosis
Specifically during the Postprandial Period
During waking, mice receive various odor inputs from the

external environment. Deprivation of olfactory sensory input

greatly increases the number of apoptotic GCs (Corotto et al.,

1994; Fiske and Brunjes, 2001; Petreanu and Alvarez-Buylla,

2002; Yamaguchi and Mori, 2005). To examine the influence of

olfactory sensory input on GC elimination during the postpran-

dial period, one nostril was occluded inmice prior to food restric-

tion (Figure 5A). Sensory deprivation was confirmed by reduced

expression of phosphorylated ERK in GCs (Figures S4A and

S4B;Miwa andStorm, 2005). Results showed a 7.4-fold increase

in the number of apoptotic GCs 2 hr after the start of food supply

compared to that before supply in the sensory-deprived OB

(Figures 5B and 5D), indicating that the extent of GC elimination

during the feeding and postprandial period is regulated by olfac-

tory sensory input. The number of apoptotic GCs increased

2.5-fold 2 hr after food supply in the normal side of the OB of

nostril-occluded mice (Figure 5C). Importantly, the number of

apoptotic GCs between the deprived and normal OBs did not

differ outside the time window of the feeding and postprandial

period (p > 0.05, t test), indicating that sensory input-dependent

GC apoptosis specifically occurs during the feeding and post-

prandial period, and that deprivation of sensory input to the

OB does not affect the time window of enhancedGC elimination.

Examination of caspase-3-activated GCs with the BrdU-

labeling method and DCX-immunohistochemistry showed that

more than half of caspase-3-activated GCs were either BrdU-

positive (14–20 days of age) or DCX-positive newly generated

GCs both before and at 2 hr after the start of food supply

(52.0% ± 4.6% before feeding and 55.3% ± 3.5% at 2 hr after

supply; Figures 5E and S4C). The results show also that

apoptosis of newly generated GCs increased (5.3-fold) in the

sensory-deprived OB during the feeding and postprandial

period. Analysis of TUNEL-positive cells also confirmed the large

increase in apoptotic GCs in the sensory-deprived OB during

this period (Figure S4D).

To address the question of whether postprandial behaviors

contribute to the enhanced GC apoptosis in the sensory-

deprived OB, behaviors of nostril-occluded mice were exam-

ined. As in nostril-intact mice, extensive eating behavior during

the initial hour and postprandial behaviors during the subsequent

hour occurred in the nostril-occluded mice (Figure S4E). Intrigu-

ingly, apoptotic GC number in sensory-deprived OB increased

as early as 1 hr after the start of food supply in many mice,

without apparent resting and sleeping behavior (Figure 5F; No

disturb: 1 hr; Figure S4F). However, this increase during the initial

hour was suppressed when grooming behavior (longer than 5 s)

was disturbed by gentle handling (Figure 5F; Disturb: 1 hr). The

larger increase in apoptotic GCs at 2 hr was partially but signifi-
cantly suppressed by disturbing grooming, resting and sleeping

behavior during the 2 hr. Gentle handling in nostril-occluded

mice did not reduce the amount of food pellet consumed (data

not shown). These results indicate that enhanced GC apoptosis

occurred in association with postprandial behaviors in sensory-

deprived OB. Under unilateral sensory deprivation, enhanced

GC apoptosis can occur in association with postprandial

extended grooming even without apparent sleep. GC apoptosis

in the open side of the OB of the nostril-occluded mice also

showed an increase in GC apoptosis at 1 hr, and this increase

was also suppressed by gentle handling (Figure 5G). The pres-

ence of olfactory sensory input to the open side of the OB and

its absence to the closed side during feeding timewas confirmed

by examining the presence and absence of induced arc expres-

sion in GCs (Figure S4G; Guthrie et al., 2000).

Local Deprivation of Olfactory Sensory Input Causes
Local Enhancement of GC Elimination during
the Postprandial Period
The odor map of the OB shows domain and cluster organization

(Mori et al., 2006). The survival rate of adult-born GCs is regu-

lated in local OB areas by local activation with odor learning

(Alonso et al., 2006). Does local sensory input regulate the

extent of GC elimination during the postprandial period in local

OB areas? To address this question, we utilized dorsal zone-

depleted mice (DD mice), in which olfactory sensory neurons

(OSNs) in the dorsal zone (D-zone) of the epithelium were selec-

tively ablated (Kobayakawa et al., 2007). Glomerular structure

was lacking in the D-domain of the DD mouse OB due to the

depletion of OSNs targeting the D-domain (Figure S5A). Other

layers were largely maintained, including the granule cell layer

(GCL), the majority of cells in which were NeuN-expressing

GCs (data not shown). As expected, the number of GCs express-

ing an immediate early gene c-fos with odor stimulation (Magavi

et al., 2005) was drastically reduced in the D-domain (Fig-

ure S5B). The quantitative analyses in the paragraph below

were conducted in coronal sections at the central portion in

the rostrocaudal axis of DD and wild-type mouse OBs, which

include a considerable volume of both the D-domain and ventral

domain (V-domain) (Figure S5C).

DDmice and wild-typemice were subjected to food restriction

and examined for caspase-3-activated GCs in the D- and

V-domains (Figures 6A and S5D). In the DD mouse OB, the

density of caspase-3-activated GCs in the D-domain increased

3.2-fold during the postprandial period compared to that before

feeding, while that in the V-domain increased 2.2-fold (Figures

6A and 6B). The ratio of caspase-3-activated GC density in the

D-domain to that in the V-domain was greater in the postprandial

period (2.0 ± 0.2; average ± SEM) than before food (1.3 ± 0.1)

(Figure 6D; p = 0.009). In wild-type mouse OB, the density of

caspase-3-activated GCs increased during the postprandial

period by 2.3-fold in the D-domain and 2.0-fold in the V-domain

(Figures 6C and S5D). The ratio of caspase-3-activated GC

density in the D-domain to that in the V-domain was 1.5 ± 0.1

before food and 1.8 ± 0.1 in the postprandial period (Figure 6D),

showing no significant difference between the two time points

(p = 0.09). These results indicate that the deprivation of sensory

input in the local OB area in DD mice greatly enhanced GC
Neuron 71, 883–897, September 8, 2011 ª2011 Elsevier Inc. 889



Figure 5. Sensory Deprivation Greatly Enhances GC Elimination during the Postprandial Period

(A) Protocol for olfactory sensory deprivation and restricted feeding. On day 0, one nostril was cauterized in eachmouse. Food was supplied from 11:00 to 15:00.

(B) Caspase-3-activatedGCs in deprived and normal OBs. Panels show normal (left) and deprived (right) OBs before feeding (upper) and 2 hr after the start of food

supply (lower). Scale: 100 mm.

(C and D) Caspase-3-activated GCs in normal (C) and deprived OBs (D) at different time points. Number of mice analyzed was 4 (7:00), 4 (11:00), 3 (13:00),

4 (15:00), 3 (19:00), 3 (23:00), and 4 (3:00).

(E) Number of caspase-3-activated GCs in sensory-deprived OB that are positive for either BrdU (14–20 days of age) or DCX before and 2 hr after the start of food

supply. n = 3 mice for each group. Data represent the average ± SEM.

(F andG) Effect of disturbance of postprandial behavior on enhanced GC apoptosis in deprived (F) and normal OBs (G). Mice were analyzed before food (pre), 1 hr

after the start of food supply without (No disturb: 1 hr) or with postprandial behavior disturbance (Disturb: 1 hr), and 2 hr after the supply without (No disturb: 2 hr) or

with postprandial behavior disturbance (Disturb: 2 hr). Each dot in graphs represents the number of caspase-3-activated GCs in one animal.

Bars represent the average. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not significant; t test (E) and one-way ANOVAwith post hoc Bonferroni test (other graphs). See

also Figure S4.
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elimination in that local area during the postprandial period. An

increase in apoptotic GCs in the D-domain of DD mice during

the postprandial period was also confirmed by an increase in

TUNEL-positive cells (Figure S5F). Disturbance of postprandial

behaviors of DD mice suppressed the enhanced GC apoptosis

2 hr after the start of food supply in both the D- and V-domains
890 Neuron 71, 883–897, September 8, 2011 ª2011 Elsevier Inc.
(Figures 6E, 6F, and S5E). Apoptotic GCs in DD mice showed

no significant increase 1 hr after the start of food supply, as

was also seen in wild-type mice with intact nostrils (Figures 6E

and 6F).

In the D-domain of DD mice, more than half of caspase-3-

activated GCs were either BrdU-positive (14–20 days of age)



Neuron

Neuronal Elimination during Postprandial Period
or DCX-positive new GCs both before and 2 hr after the start of

food supply (Figures 6G and S5G). To examine whether

enhanced apoptosis of new GCs in locally sensory-deprived

areas leads to a decrease in their long-term survival in these

areas, adult-born GCs were BrdU-labeled and followed-up for

2 months (Figures 6H–6K and S5H). In the DDmice OB, the total

number of BrdU-labeled cells per OB on days 9–13 was 72.1%

of that in wild-type mice OB (Figure S5I), reflecting the small

volume of the DD mouse OB. Interestingly, however, the density

of labeled GCs in the D-domain of DD mice on days 9–13

was 1.7-fold larger than that in the V-domain of these mice

(Figures 6H and 6J), which was also larger than that in the

D- and V-domains of wild-type mice (Figures 6I and 6J). In this

period, the density of BrdU and DCX double-positive GCs

remarkably increased in the D-domain of DD mice (Figure S5J),

indicating the enhanced recruitment of immature GCs in the

area. Labeled cell density in the D-domain ofDDmice decreased

remarkably thereafter, becoming comparable to that in the

V-domain on days 28–32 and 56–60 (ratio, �1.0; Figures 6H

and 6J). Survival rate of adult-born GCs (density ratio of BrdU-

labeled cells, days 56–60/days 9–13) in the D-domain was

34.7%, which was significantly lower than that in the V-domain

(62.3%; Figure 6K). In wild-type mouse OB, the density of

labeled GCs in the D-domain was slightly higher than that in

the V-domain, and the ratio (D-domain/V-domain) was constant

across all time points examined (nearly 1.2; Figures 6I and 6J).

Survival rates of adult-born GCs in the D- and V-domains of

wild-type mice were comparable to that in the V-domain of DD

mouse OB (Figure 6K). These results indicate the local regulation

of (1) immature GC recruitment, (2) sensory input-dependent

apoptosis of new GCs, and (3) long-term survival of new GCs,

in the DD mouse OB.

Food Intake Is Not an Absolute Requirement
for the Enhancement of GC Apoptosis
Postprandial period-specific enhancement of GC apoptosis in

food-restricted mice may raise the general idea that food intake

is an absolute requirement to triggering the enhanced GC

apoptosis. To address this possibility, mice habituated to

restricted feeding were left without food at the presumptive

feeding time (Figure 7A; no food). In contrast to mice that ate

food, thosewithout foodcontinued to showexploratory behavior,

without resting, sleeping, or extended periods of grooming,

during the initial 2 hr of the presumptive feeding time (data not

shown). In this period, there was no increase in apoptotic GC

number (Figure 7B; 2 hr—no food). In addition, mice with

restricted feeding that were allowed to smell food odor but

were prevented from eating (Figure 7A; food odor) also showed

continual exploratory and sniffing behaviors during the presump-

tive feeding time, and also exhibited no enhancement of GC

apoptosis (Figure 7B; 2 hr—food odor).

The observation period of the food-deprived mice was then

prolonged beyond the presumptive feeding time (Figure 7C).

After many hours, the mice showed various behaviors including

grooming, resting, and sleeping. When examined after showing

sleeping behavior (Figure 7C, arrows), some showed a several-

fold increase in GC apoptosis (Figure 7D). This observation

indicates that actual food intake is not an absolute requirement
for enhanced GC apoptosis in food-restricted mice and also

suggests that the postprandial period is a typical but not the

only period in which GC apoptosis can be enhanced (see

Discussion).

Enhanced GC Apoptosis during the Postprandial Period
Occurs without Long-Term Entrainment to Food
Restriction
The enhanced GC apoptosis observed so far might largely

depend on the specific paradigm of food restriction. Alterations

in body status such as hormonal levels and energy metabolism

in long-term food-restricted mice (Gao and Horvath, 2007)

may be important to the enhancement of GC apoptosis during

the postprandial period. To examine whether GC apoptosis

during the postprandial period is enhanced in mice without

long-term food restriction, we designed a one-time food restric-

tion paradigm. In this paradigm, food was abruptly removed

for 4 hr and 20 min in ad libitum feeding mice and then made

available again to efficiently induce feeding and postprandial

behaviors (Figure 7E, middle bar). Food was removed during

the early dark phase of the circadian cycle, because this

was the period in which ad libitum feeding mice ate most

extensively (data not shown; Zucker, 1971). Following food

redelivery, the mice successfully showed feeding and subse-

quent postprandial behaviors, including grooming, resting, and

sleeping.

Under this paradigm, GC apoptosis was enhanced in mice

with feeding and postprandial behaviors compared to mice

before food supply (Figure 7F). Because under this condition

the time of eating and postprandial behaviors after food redeliv-

ery varied widely among mice, the redelivery period was limited

to 1 hr only (Figure 7E, bottom bar), which efficiently induced

postprandial behaviors and enhanced GC apoptosis within

2.5 hr after the start of food redelivery (Figure 7G). Disruption

of postprandial behaviors during these hours inhibited the

enhancement of GC apoptosis (Figure 7G). Further, in nostril-

occluded mice subjected to this feeding paradigm, apoptotic

GCs remarkably increased in the sensory-deprived OB after

the postprandial behaviors, which was suppressed by gentle

handling (Figure 7H). We confirmed that gentle handling did

not reduce the amount of food pellet consumed (data not

shown). These results indicated that sensory experience-depen-

dent enhancement of GC apoptosis during the postprandial

period did not depend on long-term food restriction. Another

group of ad libitum feeding mice in which the period of food

removal and re-delivery was set at a different circadian time

(late dark period) also showed enhanced GC apoptosis during

the postprandial period, indicating that the enhancement can

occur at different circadian times in ad libitum feeding mice

with one-time food restriction (Figures S6A and S6B).

Finally, we examined GC apoptosis during the postprandial

period in ad libitum feeding mice without any short period of

food removal (Figure 7I). Mice that showed sleeping behavior

after eating in the early dark phase showed a larger number

of caspase-3-activated GCs than mice whose postprandial

behavior was disturbed (Figure 7J). Enhancement of GC

apoptosis by postprandial behavior was thus also observed in

ad libitum feeding mice without any food deprivation period.
Neuron 71, 883–897, September 8, 2011 ª2011 Elsevier Inc. 891



Figure 6. Local Sensory Deprivation Enhances Local GC Elimination during the Postprandial Period

(A) Caspase-3-activated GCs in DDmouse OB before (left) and 2 hr after food supply (right). Blue lines surround D-domain GCL and red lines surround V-domain

GCL. Boundary between the D- and V-domain is indicated by white lines. Boxed areas are magnified and shown on the right. Scale: 200 mm (low power view) and

50 mm (magnified view).
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DISCUSSION

Two-Stage Model for GC Elimination
These results in food-restricted and ad libitum-fed mice indicate

that the elimination of GCs does not occur evenly across the day

but is rather enhanced during the postprandial period. The

results suggest that an active ‘‘reorganizing signal’’ occurs in

theOBduring the postprandial period, and that olfactory sensory

inputs during waking periods regulate the extent of GC elimina-

tion during the subsequent postprandial period. The majority of

apoptotic GCs were adult-born GCs. Based on these results,

we propose the following two-stage model for the sensory

experience-dependent elimination of a subset of adult-born

GCs (Figure 8).

During the waking period, when mice show food-finding and

eating behavior, a subset of newly generated adult-born GCs

receives local olfactory sensory inputs (lower-left diagram in

Figure 8) while the remaining subset does not (upper-left

diagram). However, the putative ‘‘reorganizing signal’’ may be

relatively small, if any, during waking periods. Rather, an active

‘‘reorganizing signal’’ enters the OB during the subsequent

postprandial period (right diagrams) such that the sensory expe-

rienced subset of adult-born GCs is selected to survive (lower-

right diagram), whereas other adult-born GCs without sensory

experience are eliminated (upper-right diagram). Thus, the fate

of individual adult-born GCs might be determined by the inter-

play between the ‘‘reorganizing signal’’ and the trace of sensory

experience. This two-stage model of GC elimination resembles

the two-stage model of memory formation in the hippocampus,

which proposes memory-related structural changes occur by

the combination of learning experience during waking and

neuronal activities during subsequent sleep and rest periods

(Buzsáki, 1989; Diekelmann and Born, 2010).

Enhanced GC elimination during the postprandial period

resembles homeostatic synaptic downscaling during sleep

(Tononi and Cirelli, 2006; Vyazovskiy et al., 2008). Because

a large number of adult-born GCs are recruited in the OB every

day, elimination of adult-born and preexisting GCs (Figure 2) is

necessary to maintain the overall number of GCs in the entire

OB within an appropriate range. Sensory experience-dependent

elimination of adult-born and preexisting GCs during the post-

prandial period downscales the GC number and may increase

the ratio of useful versus useless GCs. In fact, GC elimination
(B and C) Density of caspase-3-activated GCs in the D- and V-domain ofDDmous

(D) Ratio of the density of caspase-3-activated GCs (D-domain/V-domain) inDD a

between domains is calculated in each OB and the data from different mice are

(E and F) Effect of disturbance of postprandial behavior on enhanced GC apoptos

analyzed at the indicated times with or without postprandial behavior disturbanc

(G) Percentage of either BrdU- (14–20 days of age) or DCX-positive GCs among c

2 hr after the start of food supply.

(H–K) Decreased survival of new GCs in the D-domain of DD mouse OB. BrdU wa

Labeled GC density in the D- and V-domain of DD mouse OBs (H), wild-type m

domain) ofDDandwild-typemouseOBs (J) are shown. Survival rates of BrdU-labe

(K). Survival rate was calculated by dividing the labeled GC density at days 56–6

In (E) and (F), each dot represents the number of caspase-3-activated GCs in on

average ± SEM. Numbers of mice analyzed were 6 (DD, pre), 7 (DD, 2 hr-post), 4

(G), and 4, 4, 3, and 4 DD and 4, 4, 3, and 4 wild-type mice at days 9–13, 14–18

significant; unpaired t test (B, C, D, and G) and one-way ANOVA with post hoc B
optimizes such olfactory functions as odorant exploration and

discrimination (Mouret et al., 2009).

Possible Candidates for the Reorganizing Signal
that Occurs during the Postprandial Period
What neuronal mechanisms generate the putative reorganizing

signal that leads to the enhanced elimination of adult-born

GCs during the postprandial period? The OB receives a variety

of behavioral state-dependent signals, including cholinergic

and catecholaminergic neuromodulatory signals and hormonal

signals (Adamantidis and de Lecea, 2008; Hasselmo, 1999; Fig-

ure 8). In addition, proximal dendrites of GCs in the OB receive

massive centrifugal excitatory synaptic input from the olfactory

cortex (Price and Powell, 1970), which shows behavioral state-

dependent change in information processing mode (Murakami

et al., 2005).

Given the correlation between apoptotic GC number and post-

prandial sleep length in wild-type mice (Figure 4), we consider

that the reorganization signal occurs strongly during the post-

prandial sleep period. We recently found that neurons in anterior

regions of the olfactory cortex repeatedly generate synchronized

spike discharges during slow-wave sleep, but not during

waking or REM sleep (Manabe et al., 2011). These synchronized

spike discharges of numerous olfactory cortical neurons drive

synchronized top-down centrifugal inputs to GCs in the OB

during slow-wave sleep, raising the possibility that these inputs

to GCs during postprandial sleep serve as the reorganizing

signal to GCs. Excitatory synaptic inputs to the proximal

dendrites of GCs, particularly those of newGCs, show high plas-

ticity (Gao and Strowbridge, 2009; Nissant et al., 2009). The

synchronized centrifugal inputs might induce not only synaptic

plasticity but also regulate GC elimination. It is intriguing that

very immature GCs (7–13 days of age) showed no significant

increase in cell death during the postprandial period (Figure 2).

This might be due to the scarcity of synapse formation on these

GCs, which occurs extensively after this cellular age (Carleton

et al., 2003; Kelsch et al., 2008; Whitman and Greer, 2007).

Our present study also suggests that the reorganizing signal

can occur without apparent sleep during the postprandial

period, as shown by the enhanced GC apoptosis in nostril-

occluded mice at 1 hr after the start of food supply (Figure 5).

In the hippocampus, synchronous discharges of neurons repre-

sented by sharp waves occur most frequently during slow-wave
e (B) andwild-typemouse (C) OBs before and 2 hr after the start of food supply.

nd wild-typemouse OBs before and 2 hr after the start of food supply. The ratio

averaged.

is in D-domain (E) and V-domain (F) of DD mouse OB. Each group of mice was

e.

aspase-3-activated GCs in the D- and V-domains of DDmouse OB before and

s injected for 5 days and labeled GCs were analyzed at the indicated periods.

ouse OBs (I), and ratio of labeled GC density between domains (D-domain/V-

led GCs in theD- and V-domains ofDDandwild-typemouseOBs are indicated

0 by that at days 9–13.

e animal and bars represent the average. Data in (B)–(D) and (G)–(K) indicate

(wild-type, pre), and 4 (wild-type, 2 hr-post) in (B)–(D), 5 for individual groups in

, 28–32, and 56–60, respectively, in (H)–(K). **p < 0.01; ***p < 0.001; n.s., not

onferroni test (E, F, and H–K). See also Figure S5.
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Figure 7. Enhanced GC Elimination Can Occur without Food Intake or without Entrainment to Food Restriction

Food intake is not an absolute requirement for enhanced GC apoptosis (A–D). Enhanced GC apoptosis during the postprandial period occurs without long-term

entrainment to food restriction (E–J).

(A and B) No enhancement of GC apoptosis during the presumptive feeding time in mice without food intake. (A) On day 10 at the expected feeding time,

mice were either given food (food), deprived of food (no food), or exposed to food odor only (food odor). (B), number of caspase-3-activated GCs in four groups
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Figure 8. Schematic Diagram of the Two-

Stage Model for GC Elimination

Adult-born GCs (green, Gr) make reciprocal

synapses with mitral/tufted cells (yellow, M/T) and

receive top-down synaptic input from pyramidal

cells in the olfactory cortex (gray, Py). (Left panels)

During waking, local sensory input from olfactory

sensory neurons (red, OSNs) activates a subset of

adult-born GCs (lower panel). The activated GCs

might deposit ‘‘sensory experience-dependent

tags.’’ Other adult-born GCs lack activation by

sensory experience (upper panel). (Right panels)

During the following postprandial period, a re-

organizing signal enters the OB. Adult-born GCs

activated during the waking period survive (lower),

while those without activation are eliminated

(upper). Candidates for the reorganizing signal are

glutamatergic input from the olfactory cortex,

neuromodulatory input, and hormonal signals.
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sleep, but also in other behavioral states such as awake immo-

bility, grooming, and consuming behaviors (Buzsáki et al.,

1983). It will be important to examine the top-down input from

the olfactory cortex to the OB during various behavioral states

of nostril-intact and -occluded mice. Overall, we regard the

top-down synaptic input as a plausible candidate for the reor-

ganizing signal, and are currently examining the causal link

between the synchronized top-down signal and GC elimination.

At the same time, we do not deny other possibilities, for example

that alterations in neuromodulatory and hormonal signals during

the postprandial period act as the reorganizing signal.

Role of Olfactory Activities during the Waking Period in
the Regulation of GC Elimination during the Subsequent
Postbehavioral Period
Our present observations in nostril-occluded mice and DD mice

indicated that sensory deprivation did not affect the time window
of mice. Mice were tested before food or 2 hr after the various feeding conditio

sustained grooming.

(C and D) Enhanced GC apoptosis in mice without food intake at many hours

and observed continually after the presumptive feeding time. Mice were analyze

(n = 15 mice). (D) Number of caspase-3-activated GCs in mice shown in (C) (filled

(open squares).

(E–H) Enhanced GC apoptosis during the postprandial period of ad libitum feedin

Ad libitum feeding mice were deprived of food from 16:40 to 21:00 and then rede

(bottom bar; 21:00–22:00). Mice were analyzed before food redelivery (open tria

Mice were also analyzed 1 hr after the food redelivery (closed triangle in the bott

restriction. One group of mice was analyzed before food redelivery (open triangle i

continual food redelivery and postprandial sleep behavior (arrows in the middle

behavior on enhanced GC apoptosis in mice with one-time food restriction follow

GCs in nostril-intact mouse OB (G) and sensory-deprived OB of nostril-occludedm

without postprandial behavior disturbance.

(I and J) Enhanced GC apoptosis during the postprandial period of ad libitum f

analyzed after showing eating and sleeping behaviors during the early dark phase

sleep behavior. In another group of mice, postprandial behavior during the peri

(J) Number of caspase-3-activated GCs of the eating-sleep group (black circles)

Each dot in graphs represents the number of caspase-3-activated GCs in one a

significant; one-way ANOVA with post hoc Bonferroni test (B, G, and H) and unp
of enhanced GC elimination, but rather shifted the direction of

GC response to the reorganizing signal during the postprandial

period from survival to elimination. Olfactory sensory input is

likely to drive glutamatergic synaptic inputs to adult-born GCs.

Drawing from the general idea that experience puts ‘‘tags’’ on

specific synapses which serve as substrates for the subsequent

synapse-specific plastic modulation (Frey and Morris, 1997),

olfactory sensory inputs are considered to put tags on glutama-

tergic synapses of particular adult-born GCs. We speculate that

GCswith tagged synapses are prevented from elimination by the

putative reorganizing signal during the postprandial period, while

nontagged GCs are eliminated by the signal. The sensory depri-

vation models in the present study appear to be helpful in under-

standing this tagging mechanism.

The occurrence of enhanced GC elimination in mice without

food intake (Figure 7) suggests that the postprandial period is

a typical but not the only time window in which GC elimination
ns in (A). During the 2 hr, mice without food showed no resting, sleeping or

after the presumptive feeding time. (C) On day 10, mice were not given food

d 1 hr after showing initial sleep behavior. Arrows indicate the fixation times

circles). Data of mice before feeding (11:00) are also indicated for comparison

g mice under one-time food restriction. (E) One-time food restriction paradigm.

livered with food. Food was redelivered continually (middle bar) or only for 1 hr

ngle) and 30–40 min after showing initial postprandial sleep behavior (arrows).

om bar). (F) Number of caspase-3-activated GCs in mice under one-time food

n themiddle bar in E; open squares in F). The other groupwas analyzed after the

bar in E; closed circles in F). (G and H) Effect of disturbance of postprandial

ed by 1 hr of food redelivery (bottom bar in E). Number of caspase-3-activated

ice (H) was analyzed at indicated times after the start of food redelivery with or

eeding mice without any food deprivation period. (I) One group of mice was

(black arrows). They were analyzed 30–40min after showing initial postprandial

od was disturbed. They were analyzed at the same time points (red arrows).

and the eating-disturbance group (red squares).

nimal. Bars represent the average. *p < 0.05; **p < 0.01; ***p < 0.001; n.s., not

aired t test (D, F, and J). See also Figure S6.

Neuron 71, 883–897, September 8, 2011 ª2011 Elsevier Inc. 895



Neuron

Neuronal Elimination during Postprandial Period
is enhanced. We are currently examining the possibility that

other behaviors, such as olfaction-mediated avoidance behavior

andmating behavior (Kobayakawa et al., 2007; Mak et al., 2007),

also lead to enhanced GC elimination during the postbehavioral

period. These olfactory behaviors are accompanied by alter-

ations in neuromodulatory and hormonal signals. For example,

norepinephrine signals are stimulated by feeding and mating

(Brennan et al., 1990; Wellman, 2000), and metabolic hormones

and the dopaminergic system work together in controlling

feeding (Hommel et al., 2006). We speculate that such waking

behavior-related signals play crucial roles in the subsequent

GC elimination. These signals may promote the generation of

putative reorganizing signal during the postbehavioral period,

or potentiate GC responsiveness to it. Such mechanisms may

explain why the enhancement of GC elimination was restricted

to the postprandial period in food-restricted mice, and similar

mechanisms might be at work in the feeding and postprandial

period of ad libitum feeding mice. The combinatory role of olfac-

tory sensory experience and neuromodulatory/hormonal signals

during waking behavior and signals during the postbehavioral

period will likely be revealed as the key mechanisms of the expe-

rience-dependent reorganization of the bulbar circuit.

EXPERIMENTAL PROCEDURES

Animals and Housing

C57BL/6 male mice (8 weeks old) were used for most experiments. DD male

mice and age-matched C57BL/6 male mice (11–12 weeks old) were also

used. They were housed individually under a 12 hr light-dark cycle. All exper-

iments were conducted in accord with the guidelines of the Physiological

Society of Japan and were approved by the Experimental Animal Research

Committee of the University of Tokyo.

Restricted Feeding

Foodwas supplied for only 4 hr per day (11:00–15:00). Themice were analyzed

on day 10. To analyze ad libitum feeding mice, food was removed for about

4 hr on the day of analysis and then delivered again.

Behavioral Analysis and Disturbance of Postprandial Behavior

Animal behavior was video recorded and analyzed. Behavior was categorized

as eating, drinking, grooming, exploratory, or resting/sleeping. Postprandial

resting, sleeping, and extended grooming (more than 5 s) were disrupted by

gentle handling (Mistlberger et al., 2003), in which mice were stimulated by

stroking the body with a plastic ruler.

EEG and EMG Recording

Electrodes were implanted in the neck muscle for EMG and in the bone above

the occipital cortex for EEG. The mice were subjected to food restriction. EMG

and EEG during the postprandial period were captured and analyzed. The

mice were perfusion-fixed immediately after data acquisition.

Nostril Cauterization

Olfactory sensory deprivation was conducted by nostril cauterization as

described previously (Yamaguchi and Mori, 2005).

BrdU Labeling

Adult-born GCs were labeled by intraperitoneal BrdU injection for 7 days and

analyzed at various periods. Neonate-born GCs were BrdU-labeled on post-

natal days 4 and 5. Adult-born GCs inDDmice was examined by BrdU labeling

for 5 or 7 days.

Immunohistochemistry

Mice were deeply anesthetized with pentobarbital and transcardially perfused

with PFA. Coronal OB sections (20 mm thickness) were immunostained and
896 Neuron 71, 883–897, September 8, 2011 ª2011 Elsevier Inc.
examined. TUNEL assay was conducted as described in Supplemental Exper-

imental Procedures.

Cell Counting

Coronal sections of the entire OB were selected at the rate of 1 in every 10

serial sections. The number of caspase-3-activated GCs in the GCL was

counted, summed, and multiplied by 10 to obtain the total number per OB.

Comparative analysis ofDDandwild-typemouseOBswas done using coronal

sections at the central portion in the rostro-caudal axis.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, one table, one movie, and

Supplemental Experimental Procedures and can be found with this article

online at doi:10.1016/j.neuron.2011.05.046.
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